Contrôle de la couleur de la ligne et du type de ligne dans la légende ggplot

Contexte

En Allemagne, il existe 16 États fédérés, dont dix appartiennent à l’Allemagne de l’Ouest, dont six à l’Allemagne de l’Est. À certains égards, par exemple les taux de mortalité de certains cancers, il existe des différences persistantes entre les dix anciens États occidentaux et les six anciens États de l’Est. Il existe également des différences entre les États au sein des groupes respectifs.

Pour montrer les différences entre les États, il est logique de tracer des données, par exemple la mortalité par cancer du sein normalisée selon l’âge, par année, pour chaque État. Une plot de 16 lignes n’est pas toujours un bon choix et je ne veux pas ouvrir une discussion à ce sujet. Parfois, les pouvoirs en place sont ce que cela doit être.

Le problème

Différencier parmi 16 lignes sur une plot peut être difficile. Pour ce faire, j’utilise généralement une combinaison de couleurs du package RColorBrewer (les dix premières couleurs de Set3 plus les six premières couleurs de cette palette, correspondant aux dix anciens états de l’ouest et six anciens états de l’est) et des lignes (une ligne). tapez pour l’est, un pour l’ouest). En utilisant le système de lattice , un graphique des taux de mortalité du cancer du sein normalisés selon l’âge de 1998 à 2010 pourrait se présenter comme suit:

xyplot qui fonctionne

La question

Je voudrais faire un tracé similaire en utilisant ggplot , mais je n’ai pas compris comment combiner les couleurs et les types de lignes dans la légende. Jusqu’à présent, j’ai eu jusqu’à présent:

ggplot insatisfaisant

S’il est possible de combiner les couleurs et les types de ggplot dans les légendes de ggplot , comment s’y prend-il?

Voici le code pour créer le bloc de données et les tracés:

 mort3 <- structure(list(State = structure(c(8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L, 8L, 9L, 11L, 12L, 4L, 2L, 6L, 13L, 3L, 5L, 7L, 10L, 14L, 15L, 1L, 16L), class = "factor", .Label = c("SH", "HH", "NI", "HB", "NW", "HE", "RP", "BW", "BY", "SL", "BE", "BB", "MV", "SN", "ST", "TH")), BCmort = c(16.5, 16.6, 15, 14.4, 13.5, 17.1, 15.8, 16.3, 18.3, 16.8, 17, 18.1, 13.1, 15.1, 18.8, 13.1, 16.4, 16.1, 15.8, 12.8, 16.3, 19.2, 16.8, 13, 17.9, 17, 19.4, 19.4, 13.1, 13.8, 18.1, 13.8, 15.9, 17.3, 17.5, 13.7, 17.4, 17.5, 16.7, 15.5, 18.1, 18, 20.1, 19.1, 11.8, 14.6, 18.2, 13.4, 16.8, 17.5, 15.6, 14.1, 13.9, 18.2, 17.1, 15.2, 18.1, 16.6, 19.3, 18.6, 13.1, 14.6, 19.6, 12.4, 16.6, 17.8, 17.5, 14.3, 20.5, 19.2, 19, 12.6, 19.5, 17.8, 19.2, 21, 14.4, 13.4, 19.8, 14, 17.5, 18.9, 16.4, 14.7, 17.7, 20.1, 18.5, 14.5, 19.1, 19.2, 20.1, 19.7, 14.2, 16.2, 17.9, 12.6, 18, 18.7, 17.7, 16.5, 16.6, 20.3, 18.1, 15.2, 19, 20, 19.8, 21.3, 13.8, 14.8, 20.4, 14.8, 18.2, 18.7, 16.9, 16.2, 20.2, 20.4, 18.5, 14, 20.2, 18.7, 20.3, 17.7, 14.4, 14.5, 21.7, 13.7, 18.3, 19.7, 17.8, 16.5, 20.2, 21.7, 18.8, 16.7, 20.4, 20, 19.6, 22.9, 15.2, 14.9, 21.7, 14.6, 18.3, 19.7, 17, 16.7, 22.9, 16.2, 19.6, 15.9, 20.3, 19.9, 18.9, 21.8, 14.9, 18, 21.4, 16.1, 19.6, 19.2, 19.1, 16.7, 20, 18.2, 20.5, 15.5, 20.5, 21.1, 21.3, 23.8, 15.8, 15.3, 21.3, 15.7, 19.6, 20.3, 19.2, 17.4, 18.1, 23.1, 20.6, 16.2, 21.5, 20.3, 21.4, 20.8, 16.1, 15.8, 22.1, 14.5, 20, 20.2, 19, 18.7, 23.1, 21.8, 19.4, 17.4, 20.9, 20.5, 20.4, 23.2, 16.3, 17.6, 23.1, 16.5), year = c(2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2009, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2008, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2005, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2004, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2003, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2001, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998), eastWest = structure(c(1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L), .Label = c("west", "east"), class = "factor")), .Names = c("State", "BCmort", "year", "eastWest"), class = "data.frame", row.names = c(NA, -208L)) colVec<-c(brewer.pal(10,"Set3"),brewer.pal(6,"Set3")) ltyVec<-rep(c("solid","dashed"),c(10,6)) ggplot(mort3, aes(x = year, y = BCmort, col = State, lty = eastWest)) + geom_line(lwd = 1) + scale_linetype_manual(values = c(west = "solid", east = "dashed")) + scale_color_manual(values = c(brewer.pal(10, "Set3"), brewer.pal(6, "Set3"))) + opts(title = "BC mortality") xyplot(BCmort ~ year, data = mort3, groups = State, lty = ltyVec, type = "l", col = colVec, lwd = 2, key = list(lines = list(lty = ltyVec, col = colVec, lwd = 2), text = list(levels(mort3$State)), columns = 1, space = "right", title = "State"), grid = TRUE, main = "BC mortality") 

L’astuce consiste à mapper la colour et le linetype de linetype à l’ State , puis à définir scale_linetype_manual avec 16 niveaux:

 ggplot(mort3, aes(x = year, y = BCmort, col = State, linetype = State)) + geom_line(lwd = 1) + scale_linetype_manual(values = c(rep("solid", 10), rep("dashed", 6))) + scale_color_manual(values = c(brewer.pal(10, "Set3"), brewer.pal(6, "Set3"))) + opts(title = "BC mortality") + theme_bw() 

entrer la description de l'image ici