Diffusion stable maîtrisez l’art du design d’intérieur

Diffusion stable maîtrisez l'art du design d'intérieur avec élégance

Une plongée profonde dans la diffusion stable et sa variante d’inpainting pour le design d’intérieur

Dans ce monde effréné dans lequel nous vivons et après la pandémie, beaucoup d’entre nous ont réalisé qu’avoir un environnement agréable comme la maison pour échapper à la réalité est inestimable et un objectif à poursuivre.

Que vous recherchiez un style scandinave, minimaliste ou glamour pour décorer votre maison, il n’est pas facile d’imaginer comment chaque objet s’intégrera dans un espace rempli de différentes pièces et couleurs. C’est pourquoi nous cherchons souvent une aide professionnelle pour créer ces incroyables images 3D qui nous aident à comprendre à quoi ressemblera notre future maison.

Cependant, ces images 3D sont coûteuses et si notre idée initiale ne semble pas aussi bonne que prévu, obtenir de nouvelles images prendra du temps et plus d’argent, des choses qui sont rares de nos jours.

Dans cet article, j’explore le modèle de diffusion stable en commençant par une brève explication de ce qu’il est, comment il est entraîné et ce qui est nécessaire pour l’adapter à l’inpainting. Enfin, je termine l’article par son application sur une image 3D de ma future maison où je change l’îlot et les armoires de cuisine par une couleur et un matériau différents.

Figure 1: Design d'intérieur (source)

Comme toujours, le code est disponible sur Github.

Diffusion stable

Qu’est-ce que c’est ?

La diffusion stable [1] est un modèle d’intelligence artificielle génératif publié en 2022 par le groupe CompVis qui produit des images photoréalistes à partir de descriptions textuelles et d’images. Il a été principalement conçu pour générer des images influencées par des descriptions textuelles, mais il peut également être utilisé pour d’autres tâches telles que l’inpainting ou la création de vidéos.

Son succès vient de l’étape de compression d’image perceptuelle qui convertit une image haute dimensionnelle en un espace latent plus petit. Cette compression permet l’utilisation du modèle sur des machines à faibles ressources, le rendant accessible à tous, ce qui n’était pas possible avec les modèles de pointe précédents.

Figure 2: Architecture de diffusion stable (source)

Comment apprend-il ?

We will continue to update IPGirl; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

AI

Des chercheurs de l'Imperial College London et de DeepMind ont conçu un cadre d'IA qui utilise le langage comme outil de raisonnement central d'un agent RL.

Au cours des dernières années, il y a eu des percées significatives dans le domaine de l’apprentissage profond,...

AI

Cette semaine en IA, 7 août l'IA générative arrive sur Jupyter & Stack Overflow • Mises à jour de ChatGPT

This Week in AI sur VoAGI propose un récapitulatif hebdomadaire des derniers événements dans le domaine de l'Intellig...

AI

L'affichage 3D pourrait apporter le toucher dans le monde numérique

Des ingénieurs ont conçu un affichage morphing composé d'une grille de 'muscles' robotiques souples qui génèrent des ...

AI

Un robot injecte des médicaments dans le fond de l'œil avec plus de précision que les chirurgiens

Le robot Steady Hand Eye peut injecter des médicaments dans le fond de l'œil plus rapidement et plus précisément que ...

AI

L'empreinte carbone de l'intelligence artificielle

À la recherche de moyens de réduire les émissions de gaz à effet de serre imputables à l'utilisation de l'IA, à un mo...